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The observation that real complex networks have internal structure has important implication for dynamic
processes occurring on such topologies. Here we investigate the impact of community structure on a model of
information transfer able to deal with both search and congestion simultaneously. We show that networks with
fuzzy community structure are more efficient in terms of packet delivery than those with pronounced commu-
nity structure. We also propose an alternative packet routing algorithm which takes advantage of the knowledge
of communities to improve information transfer and show that in the context of the model an intermediate level
of community structure is optimal. Finally, we show that in a hierarchical network setting, providing knowl-
edge of communities at the level of highest modularity will improve network capacity by the largest amount.
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I. INTRODUCTION

The continuing intensity that accompanies the study of
complex networks has led to many important contributions
in a variety of scientific disciplines �for a recent review see
�1��. Specifically, the study of transport properties of net-
works is becoming increasingly important due to the con-
stantly growing amount of information and commodities be-
ing transferred through them. A particular focus of these
studies is how to make the capacity of the network maximal
while minimizing the delivery time. Both network packet
routing strategies and network topology play essential parts
in traffic flow in networks.

Traditionally routing strategies have been based on the
idea of maintaining routing tables of the best approximation
of the shortest paths between nodes. In realistic settings,
however, the knowledge that any one of the nodes has about
the topology of the network will be incomplete. So, much of
the focus in recent studies has been on searchability. In par-
ticular, distributed search using only local information has
been shown to be efficient in spatially embedded networks
�2,3�. Networks with scale-free degree distributions are par-
ticularly navigable using local search strategies due to the
presence of highly connected hubs �4�.

However, when the number of search problems the net-
work is trying to solve increases, it raises the problem of
congestion at central nodes. It has been observed, both in
real world networks �5� and in model communication net-
works �6–12�, that the networks collapse when the load is
above a certain threshold and the observed transition can be
related to the appearance of the 1 / f spectrum of the fluctua-
tions in Internet flow data �13,14�.

These two problems, search and congestion, that have so
far been analyzed separately in the literature can be incorpo-
rated in the same communication model. Previous work has
contributed a collection of models that capture the essential
features of communication processes and are able to handle
these two important issues simultaneously �8,10,15,16�. In
these models, agents are nodes of a network and can inter-
change information packets along links in the network. Each
agent has a certain capability that decreases as the number of
packets to deliver increases. The transition from a free phase
to a congested phase has been studied for different network

architectures in �8,10�, whereas in �15� the cost of maintain-
ing communication channels was considered.

The topology of the network also plays a central part in
communication processes. In �16� the problem of finding op-
timal network topologies for both search and congestion for
a fixed number of nodes and links was tackled. It was found
that in the free regime, highly centralized topologies facili-
tating search are optimal, whereas in the congested regime
decentralized topologies which distribute the packet load be-
tween nodes are favored. It has been shown that shortest path
routing algorithms are not optimal for scale-free networks
due to the presence of communication bottlenecks �17� and
several alternative routing strategies have been proposed to
take advantage of the scale-free nature of complex networks
�11,18–22�.

On the other hand, many networks found in nature have
been observed to have a modular or community structure.
Communities are those subsets of nodes that are more
densely linked internally than to the rest of the network.
Identifying communities in networks has become a problem
which has been tackled by many researchers in recent years
�see, for example, Refs. �23–25�, and for reviews see
�26,27��. Furthermore, communities are often organized in a
hierarchical way �16,28–31�. That is, large communities are
often comprised of several smaller communities. Despite all
these efforts, the impact that community structure has on
information transfer has not been considered.

The aim of this paper is twofold: First, we will investigate
the effect that community structure has on the model of
search and congestion, and second we will propose an alter-
native routing strategy and demonstrate its impact in the
presence of community structure. In the next section we will
describe the model and recall the most important analytical
results. In Sec. II we will consider the effect that a modular
structure of varying strength has on the behavior of the
model. We will then show how knowledge of this commu-
nity structure can be taken advantage of to improve transport
processes in networks. In the final section, we give some
concluding remarks.

II. COMMUNICATION MODEL

The communication model considers that the information
flowing through the networks is formed by discrete packets
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sent from an origin node to a destination node. Each node is
an independent agent that can store as many packets as nec-
essary. However, to have a realistic picture of communica-
tion we must assume that the nodes have a finite capacity to
process and deliver packets. That is, a node will take longer
to deliver two packets than just one. A particularly simple
example of this would be to assume that nodes are able to
deliver one �or any constant number� information packet per
time step independent of their load, as in the model of de-
centralized information processing in firms of Radner �32�
and in simple models of computer queues �6,7,9,15�, but note
that many alternative situations are possible.

In the present model, each node has a certain ability to
deliver packets which is limited. This limitation in the ability
of agents to deliver information can result in congestion of
the network. When the amount of information is too large,
agents are not able to handle all the packets and some of
them remain undelivered for extremely long periods of time.
The maximum amount of information that a network can
manage before collapse gives a measure of the quality of its
organizational structure. In this study, the interest is focused
on when congestion occurs depending on the topology of the
network �15�.

The dynamics of the model is as follows. At each time
step t, an information packet is created at every node with
probability �. Therefore � is the control parameter: Small
values of � correspond to low density of packets and high
values of � correspond to high density of packets. When a
new packet is created, a destination node, different from the
origin, is chosen randomly in the network. Thus, during the
following time steps t+1, t+2, . . . , t+T, the packet travels
toward its destination. Once the packet reaches the destina-
tion node, it is delivered and disappears from the network.

The time that a packet remains in the network is related
not only to the distance between the source and the target
nodes, but also to the amount of packets in its path. Nodes
with high loads—i.e., high quantities of accumulated
packets—will take longer to deliver packets or, in other
words, it will take more time steps for packets to cross re-
gions of the network that are highly congested. In particular,
at each time step, all the packets move from their current
position, i, to the next node in their path, j, with a probability
pij. This probability pij is called the quality of the channel
between i and j. In this paper, we take the special case that
each node is able to send one packet at each time step. It is
important to note, however, that the model is not determin-
istic. Here, a packet which is waiting at a particular node,
will be sent with equal probability as any other packet wait-
ing at the same node.

The packets in the present model have a limited radius of
knowledge, that is, they are able to determine whether a node
within a certain distance r is the destination node. In this
case, the packet takes the shortest possible route to the des-
tination, otherwise, it travels down a link chosen at random.
In this paper we set r=1, so that only nearest neighbors are
recognized. It has been shown in previous work that in the
free phase, there is no accumulation at any node in the net-
work and the number of packets that arrive at node j is, on
average, �Bj / �S−1�, where Bj is the effective betweenness of
node j which is defined as the fractional number of paths that

packets take through node j and S is the number of nodes in
the network. A particular node will collapse when �Bj /
�S−1��1 and the critical congestion point of the network
will be

�c =
S − 1

B�
, �1�

where B� is the maximum effective betweenness in the net-
work, that corresponds to the most central node.

If the routing algorithm is Markovian, which is the case
here, it is possible to estimate Bj analytically. The search and
congestion process can be formulated as a Markov chain,
which is dependent on the packet transition probability ma-
trix. This matrix is derived from the adjacency matrix of the
network, the radius of knowledge r, and the search algo-
rithm. Using this formulation, Bj of each node can be calcu-
lated analytically for any r �10�. In these cases, the paths that
the packets take will not be the shortest paths. As the radius
of knowledge increases, Bj converges to shortest path be-
tweenness and will be equal to it when r is greater or equal to
the diameter of the network.

III. PACKET DYNAMICS OF COMMUNICATION MODEL
ON NETWORKS WITH COMMUNITY STRUCTURE

The model from �10� can be further exploited to look at
the effects that community structure has on dynamics. To this
end we need to be able to construct networks with control-
lable community structure. We choose to use a family of
pseudorandom networks since all other properties �such as
node degree and clustering� will be equivalent to fully ran-
dom networks. The only thing that we will vary is the
strength of community structure.

First we employ the networks proposed in �33�. These
networks are comprised of 128 nodes which are split into
four communities of 32 nodes each. Pairs of nodes belonging
to the same community are linked with probability pin,
whereas pairs belonging to different communities are joined
with probability pout. The value of pin is chosen so that the
average number of links a node has to its own community,
Zin, can be controlled. While pin �and therefore Zin� is varied
freely, the value of pout is chosen to keep the total average
node degree, k, constant, and set to 16. As Zin is increased
from zero, the communities become better defined and easier
to identify.

To address the question of hierarchical structure we use a
generalization of the model of generation of networks with
community structure that includes two hierarchical levels of
communities as introduced in �28�. The graphs are generated
as follows: In a set of 256 nodes, 16 compartments are pre-
scribed that will represent our first community organizational
level. Each of these subcommunities contains 16 nodes each.
Furthermore, four second level communities are prescribed,
each containing four subcommunities, that is 64 nodes each.
The internal degree of nodes at the first level Zin1

and the
internal degree of nodes at the second level Zin2

are con-
strained to keep an average degree Zin1

+Zin2
+Zout=18. From

DANON, ARENAS, AND DÍAZ-GUILERA PHYSICAL REVIEW E 77, 036103 �2008�

036103-2



now on, networks with two hierarchical levels are indicated
as Zin1

−Zin2
, e.g., a network with 13-4 means 13 links with

the nodes of its first hierarchical level community �more in-
ternal�, four links with the rest of the communities that form
the second hierarchical level �more external� and one link
with any community of the rest of the network.

As a simple measure of structural efficiency of the net-
work in terms of packet transport, we can consider the num-
ber of packets present in the network. We allow the dynamics
to reach a steady state, which we detect by considering the
rate at which the number of packets increases in the system.
Once this rate becomes small, fluctuating around 0, we have
reached the end of the transient. It is important to note that
when ���c the system never reaches a steady state, the
mean number of packets keeps growing linearly with time,
and the rate never becomes very small. We also average over
several realizations, since the number of packets in the sys-
tem is subject to statistical fluctuations.

A. Original communication model

First, we simulate the dynamics of the model described
above, in which the packets have no knowledge of the topol-
ogy of the network at the level of community structure. In-
troducing community structure in the network topology over
which the dynamics occur increases the traffic load on the
nodes which connect communities. This is in agreement with
the finding that cutting links with the highest betweenness
separates communities �23�. It follows that the effective be-
tweenness of the nodes at each end of the bridge links will
also be increased. As a result, the capacity of the network to
deliver packets is reduced in function of how fuzzy the com-
munity structure is.

From Fig. 1 we can see that the analytical calculation
from Sec. II, of the onset of congestion �c agrees very well
with the point at which the number of floating packets di-
verges. As the strength of community structure is increased
by raising Zin, �c is reduced. This seems logical, since the
origin and destination of packets are chosen at random. It
follows that the probability of creating a packet with both
origin and destination in one community is 1/4. All other
packets will necessarily have to pass through at least one
central “bridge” node that connects two communities. This
leads to an increase in the number of packets that pass
through bridge nodes, increasing its effective betweenness.
As a result of receiving a disproportionate amount of pack-
ets, these nodes will collapse at lower values of �, leading to
a cascade of collapses throughout the network. This effect
becomes more and more pronounced as Zin increases, so, the
stronger the community structure, the lower �c.

In the case of hierarchical networks, we concentrate on
three different network topologies which are particularly in-
structive, 13-4, 14-3, and 15-2. Once again the analytical
calculation corresponds very well to the point at which the
number of floating packets diverges, see Fig. 2. It is worth
noting that these three networks have almost the same �c.
This is due to the fact that the average number of links per
node between communities of size 64 is constant and set to
1. What is varied is the strength of the intermediate and

innermost level of community structure. In the case of the
original communication model, this shows little effect.

B. Modifying the communication model

Clearly, networks with strong community structure are
less efficient at delivering packets which are oblivious to the
underlying topology. But, what happens when we give the
search process some information about the community struc-
ture? To address this question we propose a simple modifi-
cation of the way packets are transferred between nodes.

Let us consider a packet generated at node i in community
ci with destination node j in community cj. At each step in its
path, the packet is given information of the community of
neighboring nodes. Should the packet destination community
be the same as that of any of the neighbors of the node that
is processing the packet, the packet is sent to one of those
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FIG. 1. �Color online� Each point represents the number of
packets averaged over 100 realizations in the steady state of the
dynamics. �a� Number of floating packets as a function of � using
the original search algorithm in networks with one level of commu-
nity structure. The different colors denote varying levels of commu-
nity strength as controlled by the parameter Zin and the vertical lines
correspond to the analytical prediction of the onset of congestion
�Sec. II, Eq. �1��. �b� Onset of congestion �c for varying Zin.
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FIG. 2. �Color online� Number of floating packets as a function
of � using the original search in networks with hierarchical com-
munity structure on two levels. The vertical lines correspond to
analytical prediction of the onset of congestion.
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neighbors, otherwise it is sent down a link chosen at random.
In this way, packets are able to arrive at the destination com-
munity without necessarily arriving at the destination node.
The idea is that once within the destination community, find-
ing the destination node is easier.

In Fig. 3 we plot the number of floating packets in the
network at the steady state against the packet injection rate �.
The dynamics are performed on networks with ad-hoc com-
munity structure of varying strength, controlled by the pa-
rameter Zin, the average number of links internal to the com-
munity. When Zin=4 the network is equivalent to an Erdös-
Renyi random graph with 128 nodes and 16 links per node.
In this scenario, the original search algorithm performs much
better in terms of ability to deliver packets. This seems logi-
cal: Giving packets information about communities which
are not present will not improve the packet’s ability to find
the destination node. Indeed, for lower values of Zin, this
information is detrimental to efficiency, since the predefined
partitions of the network actually contain fewer internal
links, compared to external ones. In this scenario, packets are
often sent to regions of the network which are less likely to
contain the destination node. This is highlighted in Fig. 4�b�,
where we see that for very low values of Zin the original
search algorithm collapses the network at much higher val-
ues of � than the modified algorithm.

When the strength of the community structure is in-
creased, the modified search algorithm improves the effi-
ciency of the network considerably. For Zin�8 �35�, the on-
set of congestion in terms of � is considerably higher for the
modified search algorithm, and the same network is much
more efficient at delivering packets for all values of Zin�8.
In other words, the modified algorithm is able to find more
efficient routes to deliver packets and the network is able to
handle a much higher load.

In the modified search algorithm, the calculation from
Sec. II �Eq. �1�� is still valid, however, the analytic calcula-

tion of B� is more involved than in �10�. Nevertheless we can
estimate �c of the network by looking at the point where the
number of floating packets diverges. In Fig. 4�a�, �c is esti-
mated in this fashion. When the communities are extremely
well defined, say Zin=15, flow through the network is re-
stricted. So even though the search method of the packets is
greatly improved, and they are able to find the correct com-
munity in a short number of steps, flow is restricted by the
formation of bottlenecks at the interface between two com-
munities. It emerges that an intermediate community struc-
ture strength, Zin=12 shows optimal efficiency in terms of �c.
This suggests that for the flow to be optimal there must be a
balance between internal strength of communities and con-
nections to other communities.

For the case of networks with hierarchical community
structure as described above, community information can
now be given at two levels. The packets can be given infor-
mation about the community structure on the first level, that
is, they are given knowledge about which community of the
four communities of size 64 the destination node belongs to.
From here on, this is denoted as i=4. Alternatively, we can
give nodes information on the second level of community
structure, so that packets know which one of the 16 commu-
nities of size 16 the destination node belongs to, which we
denote i=16.

Once information about community structure is given to
the packets, the efficiency of the network to deliver these is
increased considerably as in the case of single level commu-
nity structure. The level of community information which
increases the efficacy of information flow by the largest
amount is dependent on the topology of the network. Com-
pared with no community information being given to the
packets, i=16 increases the values of �c almost fivefold, in
all three networks. In the case of 13-4, �c is increased from
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FIG. 3. �Color online� Comparison of the original search algo-
rithm with the modified search algorithm for the same networks
with community structure. The number of floating packets is plotted
against �. The four panels depict four networks with varying com-
munity strength controlled by the parameter Zin, and the red points
show the original search algorithm and the black points denote the
modified algorithm incorporating community information.
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FIG. 4. �Color online� Onset of collapse for the modified search
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r=1� and the modified model �denoted r=1 com�.
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0.0132 to 0.064. A stronger community structure at the sec-
ond level, 14-3 and 15-2 does not make much of an impact
when i=16, with �c being 0.063 for both.

However, when information is given at the intermediate
level of community structure, i=4, the differences become
more apparent. For the 13-4 configuration, community infor-
mation at this level favors information diffusion more, with
�c being 0.071, higher than in the i=16 case. However in the
case of the 14-3 network, the opposite is true: giving infor-
mation at the alternative, i=16 level is �marginally� more
beneficial. For the 15-2 network, giving more precise infor-
mation causes a considerable improvement �see Fig. 5�.

It is interesting to compare these results with other topo-
logical characterizations of complex networks. In particular,
the most common measure related to community structure is
the modularity measure, Q, proposed in �33� which measures
the quality of a particular partition of a particular network. It
is defined as follows:

Q = �
i

�eii − ai
2� ,

where the element i , j of the matrix e represents the fraction
of links between communities i and j and ai=� jeij. This
value can also be measured at two levels. One is at the first
level of the hierarchy, where nodes are grouped in four com-
munities of 64 nodes each, which corresponds to the i=4
case. The other, corresponding to the i=16 case, is consider-
ing that the nodes are grouped in 16 communities of 16
nodes each. In the three networks we are considering, we
only vary the strength of the second level of community
structure, so for the i=4 case, the value of modularity re-
mains constant. For the i=16 case however, the value of Q
varies with the strength of the second level. For the 13-4
network, the first level of community structure is a better
partition in terms of Q, whereas for 14-3 and 15-2 the second
level is a better partition. See Table I for values.

For 13-4, where the best partition is found at the first level
of community structure i=4, giving packets information
about the same level improves the efficiency of the network
more than giving information at the second level. For 14-3

and 15-2 the opposite is true: In both cases the best partition
is found at the second level, i=16, and the best flow in terms
of �c is found when giving information about the same level.
In other words the two coincide. This means that if commu-
nities are organized in a hierarchical fashion, it is always best
to give information at the level where the maximum modu-
larity is found.

IV. CONCLUSIONS

In this paper we have taken advantage of a model incor-
porating search and congestion simultaneously to investigate
the impact that community structure has on information
transport. We have shown that transport is compromised
when community structure is introduced in the network since
community structure implies the presence of bottlenecks. In
fact, the better defined the communities are, the more af-
fected packet transport becomes. We have also shown that
transport can be dramatically improved by providing packets
with information about the community structure. Finally we
have shown that the largest improvements are found when
the partition with the largest modularity is used to provide
the information.

This suggests that it is possible to infer a priori what kind
of information should be given to packets to optimize packet
transport, just by identifying the community structure. By
finding the communities at the level of highest modularity,
and providing information at this level, packet transport ap-
pears to be optimal. The question remains: Is this always the
case? It certainly seems possible to improve information
transfer on an arbitrary network just by providing the search
algorithm information about the community structure at the
level of highest modularity. Since maximizing the modularity
measure is NP1 hard �34�, all community detection algo-
rithms that depend on maximizing modularity are heuristic
approximations and as such different identification algo-
rithms find different partitions with varying values of optimal
modularity for real networks. The results here suggest that
giving information about the community structure as found
by the most accurate algorithms would be best. But this re-
mains to be shown in the case of real networks.

1In computational complexity theory, non-deterministic
polynomial time �NP� is the set of decision problems solvable in
polynomial time on a non-deterministic Turing machine. NP-hard
problems are at least as hard as the most difficult problems in NP.
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FIG. 5. �Color online� Number of floating packets in networks
with hierarchical community structure. The number of floating
packets is shown as a function of � for three slightly different hier-
archical networks, �a� 13-4, �b� 14-3, and �c� 15-2. For each, the
level of community hierarchy information packets are given as var-
ied between no information given i=0, information given at the first
level i=4, and information given at the second level i=16. The
vertical lines represent the analytical calculation as in Sec. II for the
original search algorithm.

TABLE I. Table of values of the onset of collapse �c in hierar-
chical networks and the values of modularity of the same for two
levels of grouping.

�c Q

Network i=0 i=16 i=4 i=16 i=4

13-4 0.0132 0.064 0.071 0.660 0.695

14-3 0.0118 0.063 0.061 0.726 0.695

15-2 0.0113 0.063 0.053 0.771 0.695
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